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Optimal System ID Fundamentals

= System identification is regression in functional spaces: Given data
pairs {u(n),d(n)} and a functional mapper y=f(u,w), minimize J(e)

Ty . Data d(n)
y(m=> " wiu(n-i)
f(u(n),w)
A
Data u(n) | Adappive | Output ™ Eqror g(n)
1 Syg#tem
(Learning
Cost

J=E(e2(n)) |

*  Optimal solution is least squares w =R'p where R is the
autocorrelation matrix of the input data over the lags and p is the
crosscorrelation vector between input and desired.




On-Line Learning for Linear Filters

i« Easiest technique is to search the performance surface J using

i
4

gradient descent learning (batch). o — Contow
W =w_ -7V, W H TV, L e *
li mE[w; ] = w*
J=E[e’(i)]
n stepsize

O O S RN
Wl

* Gradient descent learning has well known compromises:
+ Stepsize n must be smaller than 1/4,,,,. (of R) for convergence
+ Speed of adaptation is controlled by A,

+ So eigenvalue spread of signal autocorrelation matrix controls speed of
adaptation

+ The misadjustment (penalty w.r.t. optimum error) is proportional to
stepsize, so fundamental compromise between adapting fast, and small
misadjustment.




On-Line Learning for Non-Linear Filters?

» Can we generalize W =W._, +Ge€ to nonlinear models?

Y=W U mp y = f(U)

and create incrementally the nonlinear mapping?

[ fi =fi,, +Ge }

y(i )>

___»  Adaptive weight- )
control mechanism




Non-Linear Models - Traditional
(Fixed topologies)

* Hammerstein and Wiener models
+ An explicit nonlinearity followed (preceded) by a linear filter
+ Nonlinearity is problem dependent
+ Do not possess universal approximation property
= Multi-layer perceptrons (MLPs) with back-propagation
+ Non-convex optimization
¢+ Local minima
= Least-mean-square for radial basis function (RBF) networks
+ Non-convex optimization for adjustment of centers
+ Local minima

= Volterra models, Recurrent Networks, etc



Non-linear Methods with Kernels

A
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e
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Universal approximation property (kernel dependent)
Convex optimization (no local minima)

Still easy to compute (kernel trick)

But require regularization

Sequential (On-line) Learning with Kernels

(Platt 1991) Resource-allocating networks

+ Heuristic

+ No convergence and well-posedness analysis
(Frieb 1999) Kernel adaline

+ Formulated in a batch mode

+ well-posedness not guaranteed
(Kivinen 2004) Regularized kernel LMS

+ with explicit regularization

+ Solution is usually biased
(Engel 2004) Kernel Recursive Least-Squares
(Vaerenbergh 2006) Sliding-window kernel recursive least-squares

Liu, Principe 2008,2009, 2010.



Neural Networks versus Kernel Filters

ANNs Kernel filters
Universal Approximators YES YES
Convex Optimization NO YES
Model Topology grows with data NO YES
Require Explicit Regularization NO YES/NO (KLMS)
Online Learning YES YES
Computational Complexity LOW MEDIUM

ANNSs are semi-parametric, nonlinear approximators
Kernel filters are non-parametric, nonlinear approximators




Kernel Methods

= Kernel filters operate in a very special Hilbert space of
functions called a Reproducing Kernel Hilbert Space (RKHS).

= A RKHS is an Hilbert space where all function evaluations are
finite
» Operating with functions seems complicated and it is! But it

becomes much easier in RKHS if we restrict the computation
to inner products.

* Most linear algorithms can be expressed as inner products.
Remember the FIR

L-1
y(n) =Y wx(n-i)= <wa(n)>
=0




Kernel methods

* Moore-Aronszajn theorem

+ Every symmetric positive definite function of two real variables has
a unique Reproducing Kernel Hilbert Space (RKHS).

k(x, y) = exp(=h|x-y|")
= Mercer’s theorem

+ Let K(x,y) be symmetric positive definite. The kernel can be
expanded in the series

K(X,Y) =i&¢i(x)¢)i(y)

+ Construct the transform as

P(X) = [JA B s/ 05 (X, s A 0 T

¢ Inner product

(P00, 0(y)) = k(% Y) |




Kernel methods

| Mate L., Hilbert Space Methods in Science and Engineering, A. Hildger, 1989

I Berlinet A., and Thomas-Agnan C., “Reproducing kernel Hilbert Spaces in probaability and Statistics, Kluwer 2004



Basic idea of on-line kernel filtering

e

Transform data into a high dimensional feature space ¢ = @(U.)
Construct a linear model in the feature space F

y = (2, 0(U)),

Adapt iteratively parameters with gradient information
Q, =Q,  —nVJ,

s

A

A

Compute the output

m
fi (U) =, p(U)) = Z a, k(U,C;)
Universal approximation theorem =t

+ For the Gaussian kernel and a sufficient large m;, f,(u) can
approximate any continuous input-output mapping arbitrarily close in
the L, norm.

13
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Kernel Least-Mean-Square (KLMS)

= |Least-mean-square

wo=wo Fue) e =di)-wly o w,

% Transform data into a high dimensional feature space F ¢ = ¢(U.)

Q, =0
e(i):d(i)_<Qi—1a¢(ui)>|: sy
) e(l) T3 d(l) _<Qoa¢(u1)>|: o d(l)
Q. =Q., | +1¢(U,)el) Q =Q, +7¢(u)el) =apu)
i &(2) =d(2) —(€2;, 9(U,));
Q= ne(je,) = d(2)—(ae(W), o(u,);
j=1

i Zd(2)—a1K'(U1,U2)
fi (U) — <Q| 3 (0(U)>F £ Zﬂe( J )K(U, uj ) Q2 N Ql +7]¢(U2)6(2)
j=1 =a,¢(u)+a,p(u,)
* RBF Centers are the samples, and Weights-are the errors!




Kernel Least-Mean-Square (KLMS)

fr =713 e(i)(u(i).)

L u(i) =73 () x(u(]),u(i)
i) = d(i)— f_, (u(i))

f; = f,_, +me()x(u(l),.)




Free Parameters in KLMS
Initial Condition

% The initialization Q, =0 gives the minimum possible
norm solution.

2 m

Q =

1CnPn

s ecate J
gk+1 :"':gm:O

2 k 2 m 2
B =)0 e [FeD S ey

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 — 554, 2008.




Free Parameters in KLMS
Step size

#* Traditional wisdom in LMS still applies here.

< 2 S 2
(G, > &u(j),u(j)

n

where G, is the Gram matrix, and N its dimensionality.

» For translation invariant kernels, c(u(j),u(j))=go, is a
constant independent of the data.

% The misadjustment is therefore M =%tr[G¢]




Free Parameters in KLMS
Rule of Thumb for h

= Although KLMS is not kernel density estimation,
these rules of thumb still provide a starting point.

» Silverman’s rule can be applied
h=1.06 min{o, R/1.34}N"®Y

where ¢ is the input data s.d., R is the interquartile, N
Is the number of samples and L is the dimension.

% Alternatively: take a look at the dynamic range of the
data, assume it uniformly distributed and select h to
put 10 samples in 3 o.

Use cross validation for more accurate estimation

1




Free Parameters in KLMS
Kernel Design

= The Kernel defines the inner product in RKHS

+ Any positive definite function (Gaussian, polynomial,
Laplacian, etc.) can be used.

+ A strictly positive definite function will always yield
universal mappers (Gaussian, Laplacian).

+ For infinite number of samples all spd kernels
converge in the mean to the same solution.

+ For finite number of samples kernel function and free
parameters matter.

See Sriperumbudur et al, On the Relation Between Universality, Characteristic Kernels and RKHS Embedding of
Measures, AISTATS 2010




Sparsification

» Filter size increases linearly with samples!

= |f RKHS is compact and the environment stationary,
we see that there is no need to keep increasing the
filter size.

= Issue is that we would like to implement it on-line!

% Two ways to cope with growth:
# Novelty Criterion (NC)
+ Approximate Linear Dependency (ALD)

* NC is very simple and intuitive to implement.




Sparsification
Novelty Criterion (NC)

= Present dictionary is C(i)=1¢, }T:l . When a new data
pair arrives (u(i+1),d(i+1)).
= First compute the distance to the present dictionary
dis= mln“u(l +1)—c|
% If smaller than thréshold 81 do not create new center

# Otherwise check if the prediction error is larger than
02 to augment the dictionary.

* 01~ 0.1 kernel size and 02 ~ sqrt of MSE




Sparsification
Approximate Linear Dependency (ALD)

»* Engel proposed to estimate the distance to the linear
span of the centers, i.e. compute

pui+D)-Y,  bo(c)|
Which can be estimated by

dis® = x(u(i +1),u(i +1))=h({+1)" G ()Hh(i +1)
Only increase dictionary if dis larger than threshold
% Complexity is O(m?)
» Easy to estimate in KRLS (dis~r(i+1))

# Can simplify the sum to the nearest center, and it
defaults to NC

dis= min p(u(i +1)) = (C,)

dis=min
vb




KLMS- Mackey-Glass Prediction

SRS 0.2X(t—7) A
X(t) = O'lx(t)+1+x(t_f)10 ge=gl

0.12 :
—LMS
0 = = =KLMS| |
1
0.08 LMS
=0.2
ug-l 0.06 n
KLMS
0.04F
h=1, n=0.2
0.02 EVTATE Lin il P
\f\

0 100 200 300 400 500
iteration



Performance Growth Trade-off

—KLMS
== =KLMS-NC

0,=0.1, 0,=0.05
N=0.1, h=1

testing MSE

10_ L _-\,“__,_.F"\h..\
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KLMS- Nonlinear Channel Equalization

fU) = (2,0, = Y. 7e()x(uu,)

Z =5 +0.58 , - 1=2-09z’+n —">

m— M SE LMS
===MSE KLMS |

Mﬂ w"‘ﬂwm‘#u.-

% 200 400 600 800 1000
lteration (sample)




Nonlinear Channel Equalization

! . s KLMS (=0.1) RN
AUEQEitamS Linear LMS (1=0.003) |\ REGULARIZATION) | (REGULARIZED 2=1)
BER (6 =.1) 0.16210.014 0.02010.012 0.008 =0.001
BER (0 = .4) 0.177x0.012 0.058 0.008 0.0460.003
BER (0 =.8) 0.218%0.012 0.130%0.010 0.118+0.004

K(U;,u;) = exp(=0.1]|u; —u; ")

Algorithms Linear LMS KLMS RN
Computation (training) o) 0(@) O(1?)
Memory (training) o) O(i) O(i?)
Computation (test) o) O®1) O(1)
Memory (test) o) O®1) O(1)

Why don’t we need to explicitly regularize the KLMS?




Self-Regularization Property of KLMS

# Assume the data model d(i)=Q°(@)+Vv(i) then for any
unknown vector Q° the following inequality holds

> le(h=v(i)I
QI+ D) P

as long as the matrix {n'l —p(i)p(i)"} IS positive definite. So
+ H~ robustness

SRR 2 -
[e[F<n™ [|Q° | +2 ||V ||

+ And €2(n)is upper bounded
1Qy IP< ol €° I +271191F) o is te argest

eigenvalue of Go

<1, foralli=12,..N

The solution norm of KLMS is always upper bounded i.e.
the algorithm is well posed in the sense of Hadamard.




Intuition: KLMS and the Data Space

= KLMS search is insensitive to the 0-eigenvalue directions
Ele,()]=(1-7¢,) €,(0)

J 2i Jmin
SEAWIE ]—2 LT ) (| €T —277_—77;)

Soif ,=0, E[e,()]=¢,0) and E[&,() ]=|e,0)
= The 0-eigenvalue directions do not affect the MSE

J()=E[ld-Q ¢[]

. e : 1 |
Iiy=J,, +2 SN B 4 i) (1775, )

KLMS only finds solutions on the data subspace! It does
not care about the null space!

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 — 554, 2008.




Tikhonov Regularization

* |In numerical analysis the methodology constrains the condition
number of the solution matrix (or its eigenvalues)

* The singular value decomposition of ® can be written

o-p> ’lor S=dagls.s...s) ~__

0O O Singular value

* The pseudo inverse to estimate Q in d(i)=¢(i)' Q° +v(i) is

Q. =Pdiag[s',...,s',0...0]Q"'d
which can be still ill-posed (very small sr). Tikhonov regularized the
least square solution to penalize the solution norm to yield

J(Q)z”d—CI)TQ”+/1HQH2
Q = Pdiag( 3 3 0,...,0)0Q"d

s’+A1 s§°+A4

Notice that if A = 0, when s, is very small, s/(s,>+ A) = 1/s, — .
However if A > 0, when s, is very small, s/(s>+ A\) =s/ A - 0.




Tikhonov and KLMS

* In the worst case, substitute the optimal weight by the pseudo inverse

E[Q(i)] = Pdiag(1 - (1-75,)")§ ., (1= (1= ﬂgr))Sr 0...01Q"d

% No regularization yields Sn_1 08 '
# Tikhonov Sos i (Y A
2 2 1y 2
[s,”/(s,” +A)]'s, 204 S
02 &
= PCA G o ..: i ==== Tikhonov
Sn if Sn X th % 777777 ===Truncated SVD
O 1f Sn S th - = singuI;rvaIue i 3
» Regularization function for finite N in KLMS T T =
[1-(-7s,"/N)"]-s,
The stepsize and N control the reg-function in mm

singular value

Liu W., Principe J. The Well-posedness Analysis of the Kernel Adaline, Proc WCCI, Hong-Kong, 2008




Energy Conservation Relation

he fundamental energy conservation relation holds in RKHS!

= Energy conservation in RKHS
(i) e (i)
i (udi), u(i)) w(ud),u())

# Upper bound on step size for mean square convergence
112 0012} | |
2E[ }
F 0.01f
\ S 2 0.008
E SIRay -

* Steady-state mean square performance

|G, + =[G -], +

9,
O' 0.002}
llm E|:e (I):| 77 _?_tsri]mulation
| —o0 2 77 . | | | eory
0.2 0.4 0.6 0.8 1

stepsize n
Chen B., Zhao S., Zhu P., Principe J. Mean Square Convergence Analysis of the Kernel Least Mean Square Algorithm,
submitted to IEEE Trans. Signal Processing




Effects of Kernel Size

0.8 ‘ ‘ ‘ ‘ x10°
i:I 1 8- ® simulation |
; |
0.6
6 L
0.5]
LLl 50
L2 o4 §
L = 4
0.3- PP o—e e e e o
3 )
0.2-
2 L
0.1-
1 L
0\ | | | |
0 200 400 600 800 1000 0 0‘5 1 1 ‘5 =
Heation kernel size o

s Kernel size affects the convergence speed! (How to choose a
suitable kernel size is still an open problem)

xHowever, it does not affect the final misadjustment! (universal
approximation with infinite samples)



The Big Picture for Gradient Based Learning

2004
I T

~ ~ ~
Leaky Newton
APA APA

Affine Projection Algorithm APA

Frieb . 1999 ’

3 All algorithms have kernelized

‘ Engel, 2004
versions
The EXT RLS is a restrictive

state model Xtended weighted
RLS RLS

Liu W., Principe J., “Kernel Affine Projection Algorithms”, European J. of Signal Processing, ID 784292, 2008.




Affine projection algorithms

b
A

EE

H

LI

Solve min J(w) = E‘d —WTu‘2 which yields  w" = R;ll'du

There are several ways to approximate this solution iteratively
using
+ Gradient Descent Method
w(0)  w(i)=w(i-D+7r, -R,wi-1]

+ Newton’s recursion
w(0)  wi)=wi-D+7(R,+&)"[r,, -R,w(i-1)]

LMS uses a stochastic gradient that approximates
R, =u(u@)’ £, =d(u()

Affine projection algorithms (APA) utilize better approximations

Therefore APA is a family of online gradient based algorithms of
intermediate complexity between the LMS and RLS.



Affine projection algorithms

= APA are of the general form

U =[u =K +1),...u(d], . d@)=[d(i-K+1),...d0D)]
N SN R SN T
R, = UOUD" &, =--UDI()

Gradient  w(0)  w(i)=w(i —1)+7U()[d()-UG) w(i -1)]

Newton

w(i)=w(i-D)+nUHOUG)" +e)'UM[d@)-U@) w(i =1)]
= Notice that

(UMHUG) +&)'U>0) = U030 U3G) UG) + &)™

® SO

w(i)=w(i D) +7UMO[UG) UG)+&] ' [di)-Ul) w(i —1)]




Affine projection algorithms

= If a regularized cost function is preferred
mvin J(w) = E‘d —WTu‘2 5 ﬂHWH2
* The gradient method becomes
w(0)  w(i)=1-n)w(i -1)+7UId()-UGi)" w(i -]
Newton

w(i)=0-npA)w(i-1)+nUGH)U( )T + SI)_1 u@)d()
Or

w(i)=1-nD)w(i -D)+nUO[UG) UG+ ] 'd()




Kernel Affine Projection Algorithms

Algorithm Update equation

KAPA-1  w(i) =w(i—1)+n®(i)[d(i) — ®(i) T w(i —1)]
KAPA-2  w(i) =w(i—1)+n®0)[®(i)T®(i) 4+ X7 Hd (i) — (i) w(i —1)]
KAPA-3  w(i) = (1 = \)w (a — 1) +nP@(i)[d(i) — ()T w(i —1)]
KAPA-4  w(i) = (1 —n)w(i—1)+n®(i)[@()T ®() + ]~ d(i)

D) =[pli — K +1),....0(1)] Q1) -

KAPA 1,2 use the least squares cost, while KAPA 3,4 are regularized
KAPA 1,3 use gradient descent and KAPA 2,4 use Newton update

Note that KAPA 4 does not require the calculation of the error by
rewriting the error with the matrix inversion lemma and using the
kernel trick

Note that one does not have access to the weights, so need recursion
as in KLMS.

Care must be taken to minimize computations.

)
(




Recursive Least-Squares

= The RLS algorithm estimates a weight vector w(i-1) by
minimizing the cost function

s 2
mi Y- |d(j)-u(j)"w
j=1
% The solution becomejs

w(i—1)=U>{-DUG-D") UG -Dd(i —1)

And can be recursively computed as

AR P(i—1u(i) S
w()=w( 1)+1+U(i)TP(i—l)ll(i)[d(l) u(i) w(—1)]

Where P(i)=(U()U(i)")™" . Start with zero weights and P(0)= 1|
(0)

r(i)=1+u() P(i —Du(i) w(i)=w(i —1)+k(i)e()
k(i) =P(@i —Du(i)/r(i) P(i)=[P@i - 1) =k(@)k(@) r(i)]
(i) =d(i)—u(i) w(i-1)




Kernel Recursive Least-Squares

#* The KRLS algorithm estimates a weight function w(i) by minimizing
i1 2
mvian‘d(j)—wT(p(j)‘ + Awl
j=1
¢ The solution in RKHS becomes

w(i)=®[H)| +o) () 'di)=@()al)  al)=Q()d()
Q7' (i) can be computed recursively as
e QU= h(1)
h()'  A+¢() o)
From this we can also recursively compute Q(i)
S s I{Q(i —Dr(i)+z@i) z() —z(i)} z(i) = Q(i — Dh(i)
QM) =r() N : it o
-z(i) 1 ri)=A+x(u(),u())—z() h()

And compose back a(i) recursively

AN a(i)—z@)r'()ed) SRR SR T
a(l)—{ RPN } e(i)=d()=h()"al -1)

} h(i) = @(i -1)" (i)

with initial conditions

Q) =+ xu(@u®H]',  a@)=Q@)d()




Ci < U

a, < ri) e

Ay € Ay —I‘(i)_le(i)zj(i)

f(w) = Y alx(w(j)u)

Engel Y., Mannor S., Meir R. “The kernel recursive least square algorithm”, IEEE Trans. Signal
Processing, 52 (8), 2275-2285, 2004.




KRLS

fi = fi 1) o) - X 2, ()xcc ) i)

a,(i)=r(i)" &)
aj(i):aj(i)—r(i)_le(i)zj(i) j=1,..,1—-1
C(1)={C@-D,u()}




Computation complexity

Algorithm  Computation Memory

LMS O(L) O(L)
KLMS O(i) O(i)
SW-KRLS O(K?) O(K?)
- Oi 2 N
KAPA-L  O(i+K° i+ K) Prediction of Mackey-Glass
KAPA-2 (?{f-l-ﬁ O(i + K?)
KAPA-4  O(K?) O(i + K?)
KRLS O(i?) O(i?) 1o Jrr=m
—e |
: m— KAPA-2 ]
1 = = = S\W-KRLS |1
E
LZIO ém‘zg:;
K=10 '
K=50 SW KRLS

0 100 200 300 400 500
iteration




Simulation 1: Noise Cancellation
n(i) ~ uniform [-0.5, 05]

Primary signal

JS(Z')
nii) 'y

Noise source

& / >|

Interference u(i) | Adap \74 o V(i) -~

distortion function H -
/ e(i) |
5| Adaptive weight-

u) = n()—0.2u(i —1)—u =i —=1)+0.1n(i —1)+0.4u(i —2)
= H(n(1),n( —1),u( —1),u(i —2))




Simulation 1: Noise Cancellation

0.1

= NLMS
— SKLMS-1
SKAPA=-2 -

0088 --ooonne ______________ ______________

006 ............. I .............. , .............. I .............. :. ..............

MSE

004l - S S S S

002k} - .............. .............. .............. ...............

400 600 800 1000
iteration

D 1
0 200

Algorithm Network Size NR(dB)

NLMS N/A 0.0940.45 . : } RIS,
SKLMS-1 407414 15584048 KUA),UC))) = exp(=[[u)—u()) ")
SKAPA-2 370+14 21.994-0.80 |

K=10




Simulation 1:Noise Cancellation

T a N I

0.8 — Noisy Observation |
|
0.5 WW WYLV,
'1 L | | | | |
2500 2520 2540 2560 2580 2600
o.g ——NLMS /
Vv W
-0.5 -
o 2900 2520 2540 2560 2580 2600
505 T T T T 1
Tt ] —— KLMS-1
R ViV VYV
-0'5 | | | | 7\
2500 2520 2540 2560 2580 2600
0.5F | -
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0 i
-0.5 \ \ \ \ |
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Simulation-2: nonlinear channel equalization

St |,

Zz =5 +0.58_,

0.8

MSE

r=2-09z"+n

fpet:

e ______________ ............... e S ST |

LA S
rmim APA

e SKAP A

m— SKAPAZ

I I
0 2000 4000
iteration

i i
G000 8000 10000

K=10
c=0.1



Simulation-2: nonlinear channel equalization

; LMS1
1_8_ .......................................................... : ........ 1 II”"APA"
| —SKLMS T

iteration

Nonlinearity changed (inverted signs)




Active Data Selection

= |s the Kernel trick a “free lunch”?

+ The price we pay is large memory to store centers
+ Pointwise evaluations of the function

* But remember we are working on an on-line scenario,
so most of the methods out there need to be modified.




Active Data Selection

o
AK

The goal is to build a constant length (fixed budget)
filter in RKHS. There are two complementary
methods of achieving this goal:

+ Discard unimportant centers (pruning)
+ Accept only some of the new centers (sparsification)

Apart from heuristics, in either case a methodology to
evaluate the importance of the centers for the overall
nonlinear function approximation is needed.

Another requirement is that this evaluation should be
no more expensive computationally than the filter
adaptation.



Previous Approaches — Sparsification
* Novelty condition (Platt, 1991)

« Compute the distance to the current dictionary

dis= Cjtgti)r(li)Hu(i +1)-¢|

* Ifitis less than a threshold 6, discard
* |If the prediction error

e +1)=d(i+1)— (i +1)" Q)
* Is larger than another threshold 6, include new center.

% Approximate linear dependency (Engel, 2004)

« If the new input is a linear combination of the previous
centers discard _
pu(i +1)— che D(i) b;e(c))

dis, = min
which is the Schur Complement of Gram matrix and fits KAPA 2
and 4 very well. Problem is computational complexity




Previous Approaches — Pruning
# Sliding Window (Vaerenbergh, 2010)

+ Impose mi<B in f :iaj(i)zc(cj,.)
+ Create the Gram matrix of size B+1 recursively from size B

é(i+1):{Gh(Ti) K(C hC )} h:[K(CBH’CI)a"-oK(CB+19CB)]T

Q)= +G(i)" z=Q()h r=A+x(Cq,,Cq,)—2'h
Q(i+1):{Q(i)+zzT/r —z/r}

—Z'/r 1/1
+ Downsize: reorder centers and include last (see KAPA2)

Qi+l)=H-ffT/e a(i+)=Q(+Dd(i+1) f = Zle a, (i +x(c,,.)
+ See also the Forgetron and the Projectron that provide
error bounds for the approximation.

O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The Forgetron: A kernel-based perceptron on a fixed budget,” in Advances
in Neural Information Processing Systems 18. Cambridge, MA: MIT Press, 2006, pp. 1342—-1372.

F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online learning,” Journal of Machine Learning Research,
vol. 10, pp. 2643-2666, 2009.




Information Theoretic Statement

# The learning system  Y(U;T(1))
+ Already processed (the dictionary)
D(i) = {u(j), ()}
* A new data pair {u(i+1),d(i+1)}
+ How much new information it contains?
* |s this the right question? NO

How much information it contains with respect to the
learning system y(u;T()) ?




Information Measure

* Hartley and Shannon’s definition of information
# How much information it contains?

| (1+1)=—1In p(u(i +1),d(i +1))

= Learning is unlike digital communications:
The machine never knows the joint distribution!

#* When the same message is presented to a learning
system information (the degree of uncertainty)
changes because the system learned with the first
presentation!

» Need to bring back MEANING into information theory!




Surprise as an Information Measure

» Learning is very much like an experiment that we do
In the laboratory.

% Fedorov (1972) proposed to measure the importance
of an experiment as the Kulback Leibler distance
between the prior (the hypothesis we have) and the
posterior (the results after measurement).

* Mackay (1992) formulated this concept under a
Bayesian approach and it has become one of the key
concepts in active learning.




Surprise as an Information Measure

» Pfaffelhuberin 1972 formulated the concept of
subjective or redundant information for learning

systems as | s(X) = —log(q(X))

the PDF of the data is p(x) and g(x) is the learner’s
subjective estimation of it.

% Palm in 1981 defined surprise (or conditional
information) for a learning system y(u;T(i))

2 SripyU+1D))=Cl(1+1)=—In p(ui + 1) [T (1))




Shannon versus Surprise

Shannon Surprise
(absolute (conditional
Information) Information)
Objective Subjective
Receptor Receptor
independent dependent (on time
and agent)
Message is Message has
meaningless meaning for the
agent




Evaluation of Conditional Information
(surprise)

» Gaussian process theory
Cl+1)==In[p(u(i+1),d(i+1)|T())]=

d(@i+1)—d(i+1))

TR In[ p(u(i +1) | T(1))]

Inv27z +Ino(i+1)+

* where

di+)=h@+)"[o1+G(@)]'d(i)
o’(i+) =0’ +x(u(i+1),ui+1)—h(i+1)' [cI+G(@i)] " h(+1)




Interpretation of Conditional Information
(surprise)
Cl+1)=—In[p(u(i+1),d(i+1)|T1))]=

d(@i+1)—d(i+1))
20° (i +1)

Inv27 +Ino(i+1) + —In[p(u(i +1)| T ()]

# Prediction error &(i+1)=d(i+1)—d(i+1)
+ Large error - large conditional information
% Prediction variance o¢°(i+1)
+ Small error, large variance - large CI
# Large error, small variance - large Cl (abnormal)

# |nput distribution P(u(i+1)|T(1))
+ Rare occurrence - large ClI




Redundant, abnormal and learnable

Abnormal :  S(1+1)>T,

Learnable: T =S(1+1)=T,

Redundant: S(i+1)<T,

= Still need to find a systematic way to select these
thresholds which are hyperparameters.




Simulation-5: KRLS-SC nonlinear regression

3 Nonlinear mapping is y=-x+2x?+sin x in unit variance
Gaussian noise
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Simulation-5: nonlinear regression—
5% most surprising data

desired

50 100 150 200

iteration

desired

12




o

@)

2 >

2 z
...................... D e nU

(@) 4

()] c

e RN

— -

q]

4O Pt

C @©

e slpin

L2700

S

LND

_.“ﬁu. | -

Hin. - © © < o o o

C O o < 9 9 Q -

@ m o o o N =

o 9ZIS YI0M)au |eul}

25 3SIN Bunss)

S 5

£ T

i




200

150

KRLS-SC
= = =KRLS-ALD ||

100
final network size

50

0.08f
0.075
0
0.06
0.055

3JSIN bunse)

Simulation-5: nonlinear regression




| Simulation-6: nonlinear regression—

i abnormality detection (15 outliers)

| KRLS-SC
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Simulation-7: Mackey-Glass time series

prediction
O R LMS
107 + - = =RAN
------- KLMS-NC
o —— KLMS-SC
oo |'='='KRLS-SC

testing MSE
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iteration Algorithm  network size
RAN 361 =11

KLMS-NC 201 =11
KLMS-SC 109 =8
KRLS-5C  70+9




# centers

CO2 concentration (ppmv)

Testing MSE (dB)

Simulation-8: CO2 concentration forecasting
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Quantized Kernel Least Mean Square

* A common drawback of sparsification methods: the
redundant input data are purely discarded!

* The redundant data are very useful to update the
coefficients of the current network (not so important for
structure updating).

% Quantization approach: if the current quantized input
has already been assigned a center, we don’t need to
add a new center, but update the coefficient of that
center with the new information!

* [ntuitively, the coefficient update may yield better
accuracy and therefore a more compact network.

| Chen B., Zhao S., Zhu P., Principe J. Quantized Kernel Least Mean Square Algorithm, submitted to IEEE Trans. Neural
Networks



Quantized Kernel Least Mean Square

f =0
e(l)=d()— f_,(u())
fi=f +ne(i)xc(Q[u()], )

* Quantization in Input Space

N

% Quantization in RKHS  [Q(0)=0
&(i)=d(i) - Qi -1)" e(i)

Q1) =Q(i —1) +7e)@ | p()]
= Using the quantization method to

compress the input (or feature) space

and hence to compact the RBF Quantization operator
structure of the kernel adaptive filter

N




Quantized Kernel Least Mean Square

* Most of the existing VQ algorithms are not suitable for
online implementation because the codebook must be
supplied in advance (which is usually achieved offline),
and the computational burden is rather heavy.

% A simple online VQ method:

1. Compute the distance between u(i) and C(i-1)
as(ui).Ca-b)= min o€,
2. If dis(u(i),C(i-1))<g, keep the codebook unchanged, and quantize
u(i) to the closest code-vector by a.()=a.(i-1)+nei)
3. Otherwise, update the codebook: c()={c(-1),u()} , and do not
quantize u(i).




Quantized Kernel Least Mean Square

»= Quantized Energy Conservation Relation
& (i)
K (U, (), u())

o +—=0_—jag-nf +

>t 5,
k(U (), u(i))

= A Sufficient Condition for Mean Square Convergence

E[ ()R> -1)7g,)]>0 (CI)
\v/" < . i . o T .
i o 2E[ea(|)gg D' @, () | B
El€@)|+o;

x Steady-state Mean Square Performance

o, -2 o, +2
N "‘87,0 snmE[ej(i)]s" v+ 26
2_77 i —>o0 2—77




Quantized Kernel Least Mean Square

= Static Function Estimation

d()= O.ZX{exp[— (u(i)2+ B j+ exp(— (u(i)z_ ) H + V(i)
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= Short Term Lorenz Time Series

Quantized Kernel Least Mean Square

Prediction
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Generality of the Methods Presented

#* The methods presented are general tools for designing
optimal universal mappings, and they can be applied in
statistical learning.

# Can we apply online kernel learning for Reinforcement
learning? Definitely YES.

#» Can we apply online kernel learning algorithms for
classification? Definitely YES.

» Can we apply online kernel learning for more abstract
objects, such as point processes or graphs? Definitely
WES




Redefinition of On-line Kernel Learning

* Notice how problem constraints affected the form of the
learning algorithms.

% On-line Learning: A process by which the free
parameters and the topology of a ‘learning system’ are
adapted through a process of stimulation by the
environment in which the system is embedded.

#» Error-correction learning + memory-based learning

+ What an interesting (biological plausible?) combination.




Impacts on Machine Learning

= KAPA algorithms can be very useful in large scale
learning problems.

= Just sample randomly the data from the data base and
apply on-line learning algorithms

» There is an extra optimization error associated with
these methods, but they can be easily fit to the machine
contraints (memory, FLOPS) or the processing time
constraints (best solution in x seconds).




