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Optimal System ID Fundamentals

System identification is regression in functional spaces: Given data 
pairs {u(n) d(n)} and a functional mapper y=f(u w) minimize J(e)

Optimal System ID Fundamentals

pairs {u(n),d(n)} and a functional mapper y=f(u,w), minimize J(e)
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Optimal solution is least squares                 where R is the 
autocorrelation matrix of the input data over the lags and p is the 
crosscorrelation vector between input and desired

J E(e (n))
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crosscorrelation vector between input and desired. 



On-Line Learning for Linear Filtersg
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On-Line Learning for Non-Linear Filters?g

Can we generalize                           to nonlinear models?1i i i iw w G e−= +g

and create incrementally the nonlinear mapping?
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Non-Linear Models - TraditionalNon Linear Models Traditional
(Fixed topologies)

Hammerstein and Wiener modelsHammerstein and Wiener models
An explicit nonlinearity followed (preceded) by a linear filter
Nonlinearity is problem dependent
Do not possess universal approximation propertyDo not possess universal approximation property

Multi-layer perceptrons (MLPs) with back-propagation
Non-convex optimization
L l i iLocal minima

Least-mean-square for radial basis function (RBF) networks 
Non-convex optimization for adjustment of centers
Local minima

Volterra models, Recurrent Networks, etc



Non-linear Methods with Kernels

Universal approximation property (kernel dependent)
Convex optimization (no local minima)Convex optimization (no local minima)
Still easy to compute (kernel trick)
But require regularization
Sequential (On-line) Learning with KernelsSequential (On line) Learning with Kernels

(Platt 1991) Resource-allocating networks
Heuristic
No convergence and well-posedness analysis

(Frieb 1999) Kernel adaline
Formulated in a batch mode
well-posedness not guaranteedg

(Kivinen 2004) Regularized kernel LMS
with explicit regularization
Solution is usually biased

(Engel 2004) Kernel Recursive Least Squares(Engel 2004) Kernel Recursive Least-Squares 
(Vaerenbergh 2006) Sliding-window kernel recursive least-squares
Liu, Principe 2008,2009, 2010. 



Neural Networks versus Kernel Filters

ANNs Kernel filters

Universal Approximators YES YES
C O ti i ti NO YESConvex Optimization NO YES
Model Topology grows with data NO YES

Require Explicit Regularization NO YES/NO (KLMS)Require Explicit Regularization NO YES/NO (KLMS)

Online Learning YES YES

Computational Complexity LOW MEDIUM

ANNs are semi-parametric, nonlinear approximators
Kernel filters are non-parametric, nonlinear approximatorsp , pp



Kernel Methods

Kernel filters operate in a very special Hilbert space of 
functions called a Reproducing Kernel Hilbert Space (RKHS).p g p ( )
A RKHS is an Hilbert space where all function evaluations are 
finite
Operating with functions seems complicated and it is! But itOperating with functions seems complicated and it is! But it 
becomes much easier in RKHS if we restrict the computation 
to inner products. 
Most linear algorithms can be expressed as inner products
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Most linear algorithms can be expressed as inner products. 
Remember the FIR
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Kernel methods

Moore-Aronszajn theorem
Every symmetric positive definite function of two real variables has 
a unique Reproducing Kernel Hilbert Space (RKHS).

)exp()( 2yxhyxk −−=

Mercer’s theorem
Let K(x,y) be symmetric positive definite. The kernel can be 

d d i th i
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expanded in the series

Construct the transform as
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Kernel methods

Mate L., Hilbert Space Methods in Science and Engineering, A. Hildger, 1989
Berlinet A., and Thomas-Agnan C., “Reproducing kernel Hilbert Spaces in probaability and Statistics, Kluwer 2004



Basic idea of on-line kernel filteringg

Transform data into a high dimensional feature space 
Construct a linear model in the feature space F

: ( )i iuϕ ϕ=
Construct a linear model in the feature space F

, ( ) Fy uϕ= Ω 

Adapt iteratively parameters with gradient information 

Compute the output
iii J∇−Ω=Ω − η1

p p

Universal approximation theorem 1
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Universal approximation theorem

For the Gaussian kernel and a sufficient large mi, fi(u) can 
approximate any continuous input-output mapping arbitrarily close in 
the Lp norm.

j

the Lp norm.



Growing network structure
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Kernel Least-Mean-Square (KLMS)q ( )

Least-mean-square

Transform data into a high dimensional feature space F
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Kernel Least-Mean-Square (KLMS)( )
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Free Parameters in KLMS 
Initial Condition

The initialization               gives the minimum possible 00 =Ω

Initial Condition

norm solution.
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Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 – 554, 2008.



Free Parameters in KLMS 
Step size

T diti l i d i LMS till li hTraditional wisdom in LMS still applies here.
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where       is the Gram matrix, and N its dimensionality.
For translation invariant kernels, κ(u(j),u(j))=g0, is a 
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Free Parameters in KLMS 
Rule of Thumb for h

Although KLMS is not kernel density estimation, 
these rules of thumb still provide a starting point. 
Silverman’s rule can be applied 

where σ is the input data s d R is the interquartile N
{ } )5/(134.1/,min06.1 LNRh −= σ

where σ is the input data s.d., R is the interquartile, N 
is the number of samples and L is the dimension.
Alternatively: take a look at the dynamic range of the y y g
data, assume it uniformly distributed and select h to 
put 10 samples in 3 σ.
Use cross validation for more accurate estimationUse cross validation for more accurate estimation



Free Parameters in KLMS
Kernel Design
The Kernel defines the inner product in RKHSThe Kernel defines the inner product in RKHS

Any positive definite function (Gaussian, polynomial, 
Laplacian, etc.) can be used. 
A strictly positive definite function will always yield 
universal mappers (Gaussian, Laplacian). 
For infinite number of samples all spd kernelsFor infinite number of samples all spd kernels 
converge in the mean to the same solution.
For finite number of samples kernel function and free p
parameters matter.

See Sriperumbudur et al, On the Relation Between Universality, Characteristic Kernels and RKHS Embedding of
Measures, AISTATS 2010



SparsificationSparsification

Filter size increases linearly with samples!Filter size increases linearly with samples! 
If RKHS is compact and the environment stationary, 
we see that there is no need to keep increasing the p g
filter size.
Issue is that we would like to implement it on-line!  
Two ways to cope with growth: 

Novelty Criterion (NC)
Approximate Linear Dependency (ALD)Approximate Linear Dependency (ALD)

NC is very simple and intuitive to implement.



Sparsification
Novelty Criterion (NC)Novelty Criterion (NC)

Present dictionary is When a new data{ } imciC )(Present dictionary is                    . When a new data 
pair arrives (u(i+1),d(i+1)).
First compute the distance to the present dictionary
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If smaller than threshold δ1 do not create new center
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Otherwise check if the prediction error is larger than 
δ2 to augment the dictionary. 
δ1 0 1 kernel size and δ2 sqrt of MSEδ1 ~ 0.1 kernel size and δ2 ~ sqrt of MSE 



Sparsification
Approximate Linear Dependency (ALD)Approximate Linear Dependency (ALD)

Engel proposed to estimate the distance to the linearEngel proposed to estimate the distance to the linear 
span of the centers, i.e. compute 

)())1((min jC j cbiudis −+= ϕϕ
Which can be estimated by 
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Only increase dictionary if dis larger than threshold
Complexity is O(m2)
E t ti t i KRLS (di (i 1))Easy to estimate in KRLS (dis~r(i+1))
Can simplify the sum to the nearest center, and it 
defaults to NCdefaults to NC 
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KLMS- Mackey-Glass Predictiony
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Performance Growth Trade-off

δ1=0.1, δ2=0.05
η=0.1, h=1η



KLMS- Nonlinear Channel Equalization 
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Nonlinear Channel Equalization
Algorithms Linear LMS (η=0.005) KLMS (η=0.1)

(NO REGULARIZATION)
RN

(REGULARIZED λ=1)

BER (σ = 1) 0 162±0 014 0 020±0 012 0 008±0 001BER (σ = .1) 0.162±0.014 0.020±0.012 0.008±0.001

BER (σ = .4) 0.177±0.012 0.058±0.008 0.046±0.003
BER (σ = .8) 0.218±0.012 0.130±0.010 0.118±0.004

Algorithms Linear LMS KLMS RN 

2( , ) exp( 0.1 || || )i j i ju u u uκ = − −

Computation (training) O(l) O(i) O(i3)

Memory (training) O(l) O(i) O(i2)

Computation (test) O(l) O(i) O(i)

Memory (test) O(l) O(i) O(i)

S?Why don’t we need to explicitly regularize the KLMS?



Self-Regularization Property of KLMSg p y

Assume the data model                                 then for any 
unknown vector the following inequality holds
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Th l ti f KLMS i l b d d i
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σ1 is the largest 
eigenvalue of Gφ

)(nΩ

The solution norm of KLMS is always upper bounded i.e. 
the algorithm is well posed in the sense of Hadamard. 

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 – 554, 2008.



Intuition: KLMS and the Data Spacep
KLMS search is insensitive to the 0-eigenvalue directions
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The 0-eigenvalue directions do not affect the MSE
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KLMS only finds solutions on the data subspace! It does 
not care about the null space!

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 – 554, 2008.



Tikhonov Regularization

In numerical analysis the methodology constrains the condition 
number of the solution matrix (or its eigenvalues) 

1 2{ , ,..., }rS diag s s s=
Singular value

The singular value decomposition of Φ can be written
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which can be still ill-posed (very small sr). Tikhonov regularized the 
least square solution to penalize the solution norm to yield
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2+ λ) = 1/sr → ∞., r y , r ( r ) r

However if λ > 0, when sr is very small, sr/(sr
2+ λ) = sr/ λ → 0.



Tikhonov and KLMS

In the worst case, substitute the optimal weight by the pseudo inverse 
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No regularization yields 
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The stepsize and N control the reg-function in 
KLMS. 

Liu W., Principe J. The Well-posedness Analysis of the Kernel Adaline, Proc WCCI, Hong-Kong, 2008



Energy Conservation Relation

Energy conservation in RKHS

The fundamental energy conservation relation holds in RKHS!  

Energy conservation in RKHS
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Chen B., Zhao S., Zhu P., Principe J. Mean Square Convergence Analysis of the Kernel Least Mean Square Algorithm, 
submitted to IEEE Trans. Signal Processing
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Effects of Kernel Size
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Kernel size affects the convergence speed! (How to choose a 
suitable kernel size is still an open problem)

H i d ff h fi l i dj ! ( i lHowever, it does not affect the final misadjustment! (universal 
approximation with infinite samples) 



The Big Picture for Gradient Based Learning

Kivinen
20042004

Frieb , 1999 Engel, 2004
Affine Projection Algorithm APA

All algorithms have kernelized
versions
The EXT RLS is a restrictive 
state modelstate model

Liu W., Principe J., “Kernel Affine Projection Algorithms”, European J. of Signal Processing, ID 784292, 2008.



Affine projection algorithmsp j g
Solve                                   which yields  2

)(min uww T

w
dEJ −= du
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u rRw =0

There are several ways to approximate this solution iteratively 
using 

Gradient Descent Method

Newton’s recursion 
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LMS uses a stochastic gradient that approximates 
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)()(ˆ)()(ˆ iidii T uruuR ==

Affine projection algorithms (APA) utilize better approximations
Therefore APA is a family of online gradient based algorithms of 
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y g g
intermediate complexity between the LMS and RLS. 



Affine projection algorithmsp j g
APA are of the general form 
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Affine projection algorithmsp j g
If a regularized cost function is preferred 

22
)(i λTdEJ

The gradient method becomes
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w
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Kernel Affine Projection Algorithmsj g

KAPA 1 2 use the least squares cost while KAPA 3 4 are regularized

Ω≡wQ(i)

KAPA 1,2 use the least squares cost, while KAPA 3,4 are regularized
KAPA 1,3 use gradient descent and  KAPA 2,4 use Newton update
Note that KAPA 4 does not require the calculation of the error by 

iti th ith th t i i i l d i threwriting the error with the matrix inversion lemma and using the 
kernel trick

Note that one does not have access to the weights, so need recursion 
i KLMSas in KLMS. 

Care must be taken to minimize computations. 



Recursive Least-Squaresq

The RLS algorithm estimates a weight vector w(i-1) by 
minimizing the cost functiong

The solution becomes 
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Kernel Recursive Least-Squaresq
The KRLS algorithm estimates a weight function w(i) by minimizing 
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Engel Y., Mannor S., Meir R. “The kernel recursive least square algorithm”, IEEE Trans. Signal
Processing, 52 (8), 2275-2285, 2004.
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Computation complexityy

Prediction of Mackey GlassPrediction of Mackey-Glass

L 10L=10
K=10
K=50 SW KRLSK=50 SW KRLS



Simulation 1: Noise Cancellation
n(i) ~ uniform [-0.5, 05]

( ) ( ) 0.2 ( 1) ( 1) ( 1) 0.1 ( 1) 0.4 ( 2)u i n i u i u i n i n i u i= − − − − − + − + −
( ( ), ( 1), ( 1), ( 2))H n i n i u i u i= − − −



Simulation 1: Noise Cancellation

2( ( ) ( )) exp( || ( ) ( ) || )u i u j u i u jκ =( ( ), ( )) exp( || ( ) ( ) || )u i u j u i u jκ = − −

K=10



Simulation 1:Noise Cancellation
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Simulation-2: nonlinear channel equalization

10.5t t tz s s −= + 20.9t t tr z z nσ= − +

K=10
0 1σ=0.1



Simulation-2: nonlinear channel equalization

Nonlinearity changed (inverted signs)



Active Data Selection

Is the Kernel trick a “free lunch”?Is the Kernel trick a free lunch ?

The price we pay is large memory to store centers 
P i t i l ti f th f tiPointwise evaluations of the function 

But remember we are working on an on-line scenario, 
so most of the methods out there need to be modified. 



Active Data Selection

The goal is to build a constant length (fixed budget)The goal is to build a constant length (fixed budget) 
filter in RKHS. There are two complementary 
methods of achieving this goal:

Discard unimportant centers (pruning)
Accept only some of the new centers (sparsification)

Apart from heuristics, in either case a methodology to 
evaluate the importance of the centers for the overall p
nonlinear function approximation is needed.
Another requirement is that this evaluation should be 
no more expensive computationally than the filterno more expensive computationally than the filter 
adaptation.    



Previous Approaches – Sparsificationpp p
Novelty condition (Platt, 1991)

• Compute the distance to the current dictionaryCompute the distance to the current dictionary

• If it is less than a threshold δ1 discard
If the prediction error
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• If the prediction error 

• Is larger than another threshold δ2 include new center. 
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Approximate linear dependency (Engel, 2004)
• If the new input is a linear combination of the previous 

centers discardcenters discard

which is the Schur Complement of Gram matrix and fits KAPA 2 
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and 4 very well. Problem is computational complexity



Previous Approaches – Pruningpp g
Sliding Window (Vaerenbergh, 2010)
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See also the Forgetron and the Projectron that provide 
error bounds for the approximation
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error bounds for the approximation. 
O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The Forgetron: A kernel-based perceptron on a fixed budget,” in Advances
in Neural Information Processing Systems 18. Cambridge, MA: MIT Press, 2006, pp. 1342–1372.
F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online learning,” Journal of Machine Learning Research,
vol. 10, pp. 2643–2666, 2009.



Information Theoretic Statement

Th l i t ))(( iTThe learning system
Already processed (the dictionary) 

))(;( iTuy

ijdjuiD )}()({)( =

A new data pair 
How much new information it contains?

jjdjuiD 1)}(),({)( ==
)}1(),1({ ++ idiu

How much new information it contains?
Is this the right question? NO
How much information it contains with respect to theHow much information it contains with respect to the 

learning system ?))(;( iTuy



Information Measure

Hartley and Shannon’s definition of information
How much information it contains?

))1(),1((ln)1( ++−=+ idiupiI

Learning is unlike digital communications:
The machine never knows the joint distribution!

When the same message is presented to a learning 
system information (the degree of uncertainty) 
changes because the system learned with the first g y
presentation! 
Need to bring back MEANING into information theory!



Surprise as an Information Measurep

Learning is very much like an experiment that we do 
in the laboratory. 
Fedorov (1972) proposed to measure the importance 
of an experiment as the Kulback Leibler distanceof an experiment as the Kulback Leibler distance 
between the prior (the hypothesis we have) and the 
posterior (the results after measurement).
Mackay (1992) formulated this concept under a 
Bayesian approach and it has become one of the key 
concepts in active learningconcepts in active learning. 



Surprise as an Information Measurep
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Shannon versus Surprise

Shannon SurpriseShannon 
(absolute 

information) 

Surprise 
(conditional 
information)

Objective Subjective

Receptor
independent

Receptor 
dependent (on time 

and agent)g )
Message is 

meaningless
Message has 

meaning for the 
agentagent



Evaluation of Conditional Information 
(surprise)

Gaussian process theoryGaussian process theory
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Interpretation of Conditional Information 
(surprise)(surprise)
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Prediction error
Large error  large conditional information

Prediction variance
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)1(2 +iσPrediction variance
Small error, large variance  large CI
Large error, small variance  large CI (abnormal)
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Redundant, abnormal and learnable

1)1(: TiSAbnormal >+ 1

)1(

)(

TiSTL bl ≥≥ 21 )1(: TiSTLearnable ≥+≥

2)1(:Re TiSdundant <+

Still need to find a systematic way to select these 
thresholds which are hyperparameters. 



Simulation-5: KRLS-SC nonlinear regression

Nonlinear mapping is y=-x+2x2+sin x in unit variance 
Gaussian noise 



Simulation-5: nonlinear regression–
5% most surprising data5% most surprising data



Simulation-5: nonlinear regression—
redundancy removal



Simulation-5: nonlinear regressiong



Simulation-6: nonlinear regression—
abnormality detection (15 outliers)

KRLS-SC



Simulation-7: Mackey-Glass time series 
prediction



Simulation-8: CO2 concentration forecasting



Quantized Kernel Least Mean SquareQuantized Kernel Least Mean Square

A common drawback of sparsification methods: the 
redundant input data are purely discarded!
The redundant data are very useful to update the 
coefficients of the current network (not so important forcoefficients of the current network (not so important for 
structure updating). 
Quantization approach: if the current quantized input 
has already been assigned a center we don’t need tohas already been assigned a center, we don t need to 
add a new center, but update the coefficient of that 
center with the new information!
I t iti l th ffi i t d t i ld b ttIntuitively, the coefficient update may yield better 
accuracy and therefore a more compact network.

Chen B., Zhao S., Zhu P., Principe J. Quantized Kernel Least Mean Square Algorithm, submitted to IEEE Trans. Neural 
Networks



Quantized Kernel Least Mean SquareQuantized Kernel Least Mean Square

Quantization in Input Space 0 0f =
p p
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Using the quantization method to

compress the input (or feature) space 
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and hence to compact the RBF
structure of the kernel adaptive filter

Quantization operator



Quantized Kernel Least Mean Squareq

M t f th i ti VQ l ith t it bl fMost of the existing VQ algorithms are not suitable for 
online implementation because the codebook must be 
supplied in advance (which is usually achieved offline), 
and the computational burden is rather heavy. 
A simple online VQ method:

1 Compute the distance between u(i) and C(i 1)1. Compute the distance between u(i) and C(i-1)

2. If                                  keep the codebook unchanged, and quantize 
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u(i) to the closest code-vector by 
3. Otherwise, update the codebook:                           , and do not 

quantize u(i).     
{ }( ) ( 1), ( )i i i= − uC C

* *( ) ( 1) ( )
j j

i i e iη= − +a a



Quantized Kernel Least Mean SquareQuantized Kernel Least Mean Square

Quantized Energy Conservation Relationgy
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Quantized Kernel Least Mean SquareQuantized Kernel Least Mean Square

Static Function Estimation
2 2( ( ) 1) ( ( ) 1)( ) 0.2 exp exp ( )
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Quantized Kernel Least Mean SquareQuantized Kernel Least Mean Square

Short Term Lorenz Time Series Prediction
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Quantized Kernel Least Mean SquareQuantized Kernel Least Mean Square

Short Term Lorenz Time Series Prediction
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Generality of the Methods Presented

The methods presented are general tools for designingThe methods presented are general tools for designing 
optimal universal mappings, and they can be applied in 
statistical learning.g

Can we apply online kernel learning for Reinforcement 
learning? Definitely YES. g y
Can we apply online kernel learning algorithms for 
classification? Definitely YES. y
Can we apply online kernel learning for more abstract 
objects, such as point processes or graphs? Definitely j , p p g p y
YES



Redefinition of On-line Kernel Learning

Notice how problem constraints affected the form of theNotice how problem constraints affected the form of the 
learning algorithms. 

On-line Learning: A process by which the freeOn line Learning: A process by which the free 
parameters and the topology of a ‘learning system’ are 
adapted through a process of stimulation by the p g p y
environment in which the system is embedded.

Error-correction learning + memory-based learningg y g
What an interesting (biological plausible?) combination.



Impacts on Machine Learning

KAPA algorithms can be very useful in large scale g y g
learning problems.

Just sample randomly the data from the data base and p y
apply on-line learning algorithms

There is an extra optimization error associated with p
these methods, but they can be easily fit to the machine 
contraints (memory, FLOPS) or the processing time 
constraints (best solution in x seconds).   


