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The experimental results shown have been obtained in the canal of
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An example in distributed estimation
Find the average of the money in the pockets of the members of the assistance
In the first row.

Trivial using a centralized communication solution

Each node (person) I communicates the amount of money Yi inside his

pocket to the central node that simply computes the average as

1 N
Szﬁg)ﬁ
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Assume now that there is no central node and that each person can only talk to

their immediate neighbors. The communication structure is then

OO~ - ~®

One possibility consists in an iterative procedure in which each node (person)
1.Tells his neighbors about how much money he has
2.Computes the average of the money in his pocket and in his neighbors

pocket.
3.Repeats 1) and 2) iteratively, telling the average he has computed.

Lemos and Igreja INESC-ID




Distributed control of water delivery canal networks Controlo 2012 S

Does this converges to the average of the money for everybody in the row?
One can represent this iteration as a discrete-time state equation

X(k +1) = P x(k)
Positive system
>=—> Frobenius-Perron theorem implies that there is a dominant eigenvalue
(actually equal to 1 with an eigenvector with all components equal)

=—> The states will converge to a situation in which all states are equal
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x(0)=[1 2 25 45 5]

average = 3. It seems to work!?
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Unfortunately this method does not always work.

The problem is that the sum of the elements of X(K) is not constant along time.

50. L T L L T L ¥
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What to retain from this example

Distributed processing: multiple “agents” cooperate locally to reach a
common result.

e How to do the coordination?

e Does it converge?

Performance evaluation: How close is the result from the centralized one?
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Other examples: Bird formation flying

L’-

A classic example in distributed systems: Each bird decides its trajectory

based on the position of its neighbors.
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Other examples: Large fields of wind-mills

Seemingly isolated systems are actually coupled.
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Other examples: Hydro-power valley and electric power networks

B
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Electnoty network
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Controller structures
e Centralized (multivariable).
e Decentralized

e Distributed control agents
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Controller structures: Centralized

(Multivariable control)

Multivariable Controller

ul uz... um yl y2 e yp

Plant

A single central controller receives all plant output signals and computes in a

centralized way all the manipulated variables. Requires heavy communication.
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Controller structures: Decentralized

Cy C, o

S

Ui |Y1 Us 1Yo UnslY 2

Plant

A set of independent controllers, each one closing one feedback loop without

any concern to the others. Stability problems.
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Decentralized control: A warning example

Although each single loop has a good stability margin, the system controlled

with decentralized control may be made unstable by small uncertainty terms.

See an example in
Doyle and Stein (1081). Multivariable Feedback Design: Concepts for a
classical modern synthesis. IEEE TAC AC-26(1):4-16.
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Control agents

4 A A software entity capable of
T C t L :
4—1( ommunication e Communicating with other control agents
e Sensing and feedback control
(emsmn adaptatlon e Changing the feedback control decisions
Internal intelligence _ _ _ _
depending on internal intelligence
T mechanism.
ensing and
(Feedb ack control
I A step towards autonomous systems.
R
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Controller structures: Distributed control agents
% Decompose the plant

In subsystems.

Control Control Control
agent 1 agent 2 agent Ng @ Encapsulate the local
controllers in control
Cq C»o e Cre agents.
A A A = Create communication
Uy Y1 Us [Y> UndlY2  links.
Y Y Y

= Define the algorithm

S“bS{Stem <> S“bS%’Stem <> -<—>SUbSNyStem that allows the control
S
agentsto actin a

Plant coordinated way.

Lemos and Igreja INESC-ID




Distributed control of water delivery canal networks Controlo 2012

18

Distributed control as an interconnection of control agents

Distributed Controller

Communication

Sensor/Actuator
interconnection

Physical
interdependence

Considering the plant/controller interconnection as a graph as a number of

advantages: Results from graph theory; reconfiguration.
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Controller reconfiguration

Controller reconfiguration in response to a partial fault.
See the presentation of Inés Sampaio in the session on Coordinated Control of

Water Delivery Canals for further details of fault tolerant distributed control.
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Example: Water delivery canal

Al

Pool 1

4 pools, each of about 45m long
90 L/s nominal flow
Water fed by gravity

Side takes simulate water usage
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Manual operation: The SCADA system
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Mundane (but essential...) issues: Controller interface with SCADA

Linux C Matlab Windows GNU
C Client Prolog
Client

monitor

Easy connection to the router via cable or wireless of multiple PCs “MATLAB

clients” that read data from the canal and send orders to gates and valves.
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Qo

Decomposing the canal in subsystems

%f’

| le /

P

1 us Usg Uy
Y2 y3:.'l— Ya
:I__> Pool 1 Pool 2 NG2 Pool 3 §G3 pool?_n
G4

\ o) B

The canal is decomposed in a chain of subsystems.

Each subsystem comprises a pool, its downstream gate and an oftake.

Subsystems are physically coupled.
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How to obtain canal models?
The Saint-Venant equations - PDE embedding mass and momentum conserv.
oA a0
it T ax

a0 802/ A ah
i S Sy

. . gA— 4+ gA(S5; — So) = kqV
It il il '

— 1 time [g]

— x space [m]

— A{x, ) low cross sectional area [m?|

— (){x,t) discharge [m*s™]

itk ' ) 5 1 The friction is modeled nu=ing the Manning-Strickler formula:
— qu(z, t) lateral discharge per unit length [m<s™"]

— k constant g, _ Q|Q|n? (1)
inflow: ¢ =0 — k=0 ST ozl W)
outow: g <0 — k=1 where:

— g gravitational acceleration [ms—2] _ _ ] )

— k(x> t) water level [m] — Riz.t) hydraunlic radins [m]

— Sy(x,t) friction slope — n Manning coefficient [m—1/s]

— V{z,t) water velocity [ms—1]
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Nonlinear model based on Saint-Venant equations
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Linear models: From the Saint-Venat equations
Obtain a pencil of linear state-space models for different operating regimes

defined by flow and level by linearizing the Saint-Venant equations.

Parameters of the SV equations obtained from plant data.
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Linear Models: Identification of plant data

ldentify MISO ARX models

.08
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Canal decomposition

Describe the canal by the linear state-space model with accessible disturb.:

x(k+1) = Ax(K) +Bu(k) +Td(k)  y(Kk)=Cx(K)

Decompose the model by restraining its structure to be

All A’lZ O 0 Bll BlZ O

A: A2l A22 A23 O B _ BZl B22 B23
O A32 ASS A34 O BBZ BBB

0 0 A; A, |0 0 B,
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Local sub-system dynamics

.’,I??j(k + 1) — AE.T?(;C) -+ B:g_'u.-g(k‘) + F?dg(k)
5 () =[d; (k) u(K) k) x4 (K) X, ()]
yi(k) = Ciz;(k)
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An important special case

Sub-systems interact only through their manipulated inputs

x(k +1) = Ax(K) + Bu(k) + T'd (k)

Matrix Ais Imposed to be block diagonal:

A, 0 0 0 B,,

A |0 A 0 0| 1B,
0 0 A, O 0

0 0 0 A, |0

y(k) =Cx(k)
B, 0 0]
BZZ BZB O
B32 B33 B34

0 B43 B44_
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Local sub-system dynamics with interaction only through the inputs

.’,I??j(k + 1) — AE.T?(;C) -+ Bxg_u?;(k) T F?dg(k)
é‘l(k) :[di(k) ui—l(k) Ui+1(k):T
yi(k) = Ciz;(k)
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Does it work with decentralized Pl controllers?
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> .
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May easily become unstable!
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Distributed controller structure

y

Qo I |7 3
3 | Pool 1

1 o0 Gl Pool2 G2 | pool 3

#D —
Q,V QY QY

A chained network of upstream local level controllers, each one communicating

only with their neighbors, exchanging information about their decisions on the
manipulated and output variables.
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An equivalent graph view of the distributed controller

How to design:
e The controllers?

e The coordination algorithm?
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An alternative: Distant upstream control

Cl -~ 2 |

u

2

U
y
1 Yy
Qo o
=3 Pool 1 G1

< | C,

e Saves more water (water comes “on demand”)

e Worst rejection of disturbances (extra delay in action, fast disturbances)

e Feedforward can also be included.
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Multiobjective optimization

Partial Cost functions J X J2

Find the minimum of a global

cost function made by the

addition of local cost functions:

J (u11 U2) — 'J1(U1’ uz) + Jz(ul’uz)
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Multiobjective optimization: Pareto optimal locus

Pareto curve and global cost J

The locus of Pareto optimal

LQ'

decisions on the independent
variables is given by the

minimum of

ad;(u,u,) +(1-a)d,(u,u,)

for 0<a <1,
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Distributed optimization

J:J1+J2
( Function to optimize )—» _
min [J, (u;,u,) + 3, (U, u;)

1
Uy |Jo
T T 1 T T l Replicate the independent variables

[Agent 1 j:[Agent 2 j for each agent.

Agent 1 minimizes Jl(ul’VZ) where V2is a replica of U,

Agent 2 minimizes ‘Jz(Vl’uz) where Viis a replica of U,

A mechanism to reconcile V1 with ul and V2 with uz IS needed.
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Distributed optimization: Convergence to the Nash equilibrium of

alternating variable minimization

Iterate the steps:

1) Optimize J1(U;,U,) with respect
to Ui, keeping U, constant;

2) Optimize J2(U;,U;) with respect

to U, keeping Ui constant.

Lemos and Igreja

INESC-ID




Distributed control of water delivery canal networks Controlo 2012 40

A detour in Convex Optimization: The dual problem,

a way of incorporating constraints
Primal problem: muin J(u) subjectto AU—b =0
Lagrangian: L(U, 2*) =J (U) +A' (Au — b)
g(A) =inf L(u, 1)

Dual function:

Dual problem: A= arg max g(ﬁv)

u =argmin, L(u,A)
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Dual ascent method

lterate the following steps:

u(k +1) =arg min L(u, A(k))

Ak +1) = A(K) +a(Au(k +1) —b)

Requires strong assumptions to work.
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Back to distributed optimization

mln[J (U, U,)+ 3, (U, uy)]

Ui ,Uz

Decomposition

Agent 1

Ui, V7

Subject to vV,

min J,(u,,v,)

:u2

max min|J, (u,,v,) +J,(V,,u,) + 4, (U, -

A Vi Ui

Agent 2
min J,(v;,U,)

Vy,Up

Subjectto V1 = U;

) + /12 (ul _Vl)]
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max min|J, (U, V,) +J, (v, Uy) + 4, (U, =V, ) + 4, (U —V,)]

Ai ViU
Agent 1
rpivn [‘Jl(ul’VZ) — AV, + /12U1]
1:Y2
m2X [21(“2 _Vz)]
Agent 2

min [‘]2 (V1’ uz) — Ay + ﬂlu2]

”}S‘X [/12 (ul _Vl)]

Adjustment of multipliers ensure coordination.
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Gradient base dual ascent algorithm

Agent 1

Receives 12 (k) and U, (k) from agent 2 and updates as

u, (K +1) = u, (K) - 7/(2%+/12(k)j

v, (k +1) = v, (K) - y[gvi—w)j

2

Aok +2) = A4, (K) + (U, (k) =V, (k)
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Agent 2

Receives j1(k) and Ul(k)from agent 1 and updates as

v,k +1) = v, (k) - y@vi— z(k)]

1

Uy (K +1) =, (K) ~ y@%%(k)}

A (K +1) = 4, (K) + (U, (k) — v, (K))

Lemos and Igreja INESC-ID




Distributed control of water delivery canal networks Controlo 2012 46

Going back to the toy example:

Distributed optimization with dual ascent

Pareto curve and global cost J

10 L L L 5 L w

(0] [e)]
\

NN .

-10 -8 -6 -4 -2 0 2 4 6 8 10
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ADMM - Alternating directions method of multipliers

Minimize T (X)+9(2) subjectto X =2

L(x,2,A) = f(X)+g(x)+ A" (x_z)+§||x—z||2

Augmented Lagrangian

Recursively execute the steps:

0 X(k +1) =arg min L(x, A(k), z(k))

2) Ak +1) = A(k) + p(x(k +1) — z(k))
3) Z(k+1) =argmin L(x(k +1), A(k +1), z)
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LQG control agents

Each local control agent minimizes a quadratic cost
NI 2
Ji(u) = 9 Z(Qf«z (k)Qixi(k) + piui(k))
k=1
Resulting LQG controller with feedforward from accessible disturbances:

Uopt,i(k) = —Krpqivi(k) +uyyi(k)

The gain depends on a solution of a Riccati equation.
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Designing local control agents: MV penalty weight
Increasing the weight on the manipulated variable effort reduces the loop gain,
Implying: reduces overshoot, response slower, cuts the influence to high

frequency unmodeled dynamics.

530

—R=100"R,
ase
— R=500*R
base
——R=1000"R
base
Reference

520~

S
=
o

Amplitude [mm]
(4]
8

490

480

| | | | | | | | |
166 168 170 172 174 176 178 180 182 184
Time [minutes]

Lemos and Igreja INESC-ID




Distributed control of water delivery canal networks Controlo 2012 50

Designing local control agents: State estimator

Design the Kalman filter state estimator by selecting the process noise

variance so as to recover the LQ loop gain:

Frequency comparison for the controller loop gain with and without Kalman observer, for g=1e-3 Frequency comparison for the controller loop gain with and without Kalman observer, for q=1e4
100 T T T T J— 100 T J—
— LQ with full state acess — LQ with full state acess
80 —LQG ok —LQG

60~

40

Singular Values Magnitude (dB)
: o
Singular Values Magnitude (dB)

100 I I I I I 60
10° 10* 10° 10" 10° 10" 10° 10* 10°

10? 10% 10" 10° 10!
Frequency (rad/sec) Frequency (rad/sec)

q=10" g =10"
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Coordination among control agents (procedure)
At the beginning of each sampling interval execute the coordination recursive
procedure
1.Initialize the manipulated variable for each control agent;
2.For each control agent optimize its local cost, given knowledge of the
manipulated variable of its neighbors in the preceding iteration, that appear

as feedforward variables:

3.1f a number N¢ of iterations that ensures convergence is performed, then

stop. Otherwise, go to step 1.
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— * Computes

— - u:(Kyz]

Agent | Computes
u (K,1)

Agent || Computes
uy(K.1)

—] Computes
Agent lll w (K1)

—» Computes

Computes —
— u, (K 2)

u}(K;] —

Coordination among control agents (time evolution)

Computes
HI(KIN.:]

Computes
uz{K, NCJ

Computes
HE(K, J-'VCJ

Sampling Interval

k+1
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Coordination among control agents (convergence)

From iteration |—1 to iteration |, in each sampling interval K, the

coordination procedure progresses as the state of a linear system:

u(k, ==Zu(k,1 -1) + ¥

2

where Z is a matrix and ¥ is a vector.

1.8

Converges if max (eig (£)) <1, 1o

1.4

This spectral radius is affected by 3

=<

1.2}

the control penalty weights £ . 1

0.8

If all the P are equal: ol

0.4 :
10? 10*

p (log scale)

10 10° 10 10
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A “synthetic” example: Distributed control of the double integrator

I L
K, 2

X4
K 3
-
2 U2 22

1 0 50 100

| [sample]

The input of each integrator is a disturbance to the other.

Each local control agent controls one of the integrators.

During one sampling interval, the coordination procedure adjusts the
manipulated variables as indicated.
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Distributed control of the double integrator (conclusion)

4 T T T T T 4
i A Y
—_ —_— /] —
-~ 0 L \ . - 0 L
g /\v/\\//\\/ \/ > =
2l \/ ] 2}
4 ‘ ‘ ‘ ‘ ‘ 4 ‘ ‘ ‘ ‘ ‘
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2 2

| N n A R
CF S NN/ van AN I BCF e N I
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Time Time

N_ =10 N, =100

C

Increasing the number of coordination steps N, , the performance improves.
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Experimental results (Rejecting disturbances)

15 T T T T T T T

10 q C C 2 C 3 C 4
T 1 -1
3 s |
o

u
1 u
_5 L L L L L L L
4000 5000 6000 7000 N :?20[5] 9000 10000 11000 12000 yl ) é
I— y
15 T T T T T T T QO —— 3 y4
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o Ty ol °0 Sl lprooi2 §%2 | poois N3 w
_ : —_— Pool 4
3 = G4
= 5F C D B
a

0
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Control objective: Keep the downstream level of each pool close to a reference

level when an oftake valve is open.
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Remark: The
propagation from local
controller to local
controller of the

feedforward action.
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Experimental results (reference tracking)
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Experimental results with LQG — Changing the operating point
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Distributed MPC

A precursor: Prof. Gyro Gearloose and the problem of firefly catching

N EHI ! & proprio [ B c= CHo FATTA! HO INVENTATO
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CA !l -
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Gyro Gearlosse: a MPC precursor that does not often receive due credit.
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An alternative: “Altruistic’ control

Each local control agent minimizes a quadratic cost that considers not only its

tracking error but also the tracking errors of the neighbors:

J, = i[ef (k-+i)+e2(k +i) + o, (Auy (k +i ~1) ¢ ]

3, :i[ef(k+i)+e22(k+i)+e§(k+i)+p2(Au2(k+i—1))2]

i=1

J, :i[e,f(k i)+ e2(k+i) + py (Auy (k +i - 1)) |

e (k) =r,(k) - y;(K)is the tracking error for the level in pool | at time k.
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Optimization under stability constraints

Each local cost i is optimized under the following terminal constraints:

Vik+N+D)=rk+N+j)  j=1..,P

r

N+P IS the prediction horizon and P is the number of coincidence points.

These constraints ensure stability of the local control loops taken in isolation if

P> dlm(X) but do not ensure per se the stability of the overall system.
With additional assumptions it is possible to ensure stability of the overall

system.

Selecting N and P determines the type of response, as will be shown.
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Coordination among control agents (procedure)
At the beginning of each sampling interval execute the coordination recursive
procedure
4.nitialize the manipulated variable for each control agent;
5.For each control agent optimize its local cost, given knowledge of the
manipulated variable of its neighbors in the preceding iteration, that appear

as feedforward variables:

6.1f a number N¢ of iterations that ensures convergence is performed, then

stop. Otherwise, go to step 1.
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Coordination among control agents (convergence)

From iteration |—1 to iteration | , in each sampling interval K, the

coordination procedure progresses as the state of a linear system:
uk,) ==u(k,1 -1) + ¥

1

where Z is a matrix and ¥ is a vector.

Converges if max(eig (E)) <1 os
This spectral radius is affected by 3
the control penalty weights £ .

If all the P are equal: ol

0 200 400 600 800 1000
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Experimental results with D-SIORHC (1)
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Response to a step in the reference of the level of pool 1.
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Experimental results with D-SIORHC (2)
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Conclusions

e A distributed framework for water delivery canal networks based on
multiple control agents
o Decompose the plant
o Specify the communication structure
o Specify the local control laws
o Specify the coordination algorithm
e Examples (MPC, LQG) of coordination algorithms with low computational

load.

e Many ideas are applicable to plant networks other than water delivery
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What next?

e Coordination algorithms with low computational load and Ilow
communication requirements that yield good approximations to the global
optimum.

e Distributed minimum attention control (minimize the rate of change of the
manipulated variable — Brocket).

e Adaptive distributed control.

e Autonomous systems based on multiple cooperating control agents.

e Fault tolerant control and reconfigurable control

e Classes of applications (e. g. transport systems).
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