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Paraconsistency

In classical logic, contradictoriness (the presence of
contradictions in a theory) and triviality (the fact that such a
theory entails all possible consequences) are assumed
inseparable. This is an effect of a logical property known as
explosiveness (ex falso quodlibet or ex contradictione sequitur
quodlibet, that is, anything follows from a contradiction).
Paraconsistent logics are precisely the logics that challenge
this assumption by rejecting the classical consistency
presupposition.
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LFIs

The Logics of Formal Inconsistency (LFIs) [Carnielli, Coniglio &
Marcos 2007] constitute the class of paraconsistent logics
which can internalize the meta-theoretical notions of
consistency and inconsistency. As a consequence, despite
constituting fragments of consistent logics, the LFIs can
canonically be used to faithfully encode all consistent
inferences.
Roughly, the idea in the LFIs is to express the meta-theoretical
notions of consistency and inconsistency at the object
language level, by adding to the language a new connective.

(1) Explosion Principle α,¬α ` β is not the case in general
(2) Gentle Explosion Principle α,¬α, ◦α ` β is always the

case.
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Systems

Two systems of Paraconsistent Belief Revision are defined:
AGMp and AGM◦ [Testa 2014].
Both systems are defined over Logics of Formal Inconsistency,
but the constructions of the second are specially related to the
formal consistency operator.



The mbC

Definition (mbC[?])
Axioms:

(A1) α→ (β → α)

(A2) (α→ β)→ ((α→ (β → δ))→ (α→ δ))

(A3) α→ (β → (α ∧ β))
(A4) (α ∧ β)→ α

(A5) (α ∧ β)→ β

(A6) α→ (α ∨ β)
(A7) β → (α ∨ β)
(A8) (α→ δ)→ ((β → δ)→ ((α ∨ β)→ δ))

(A9) α ∨ (α→ β)

(A10) α ∨ ¬α
(bc1) ◦α→ (α→ (¬α→ β))

Inference Rule:

(Modus Ponens) α, α→ β ` β



Why a paraconsistent system?

Classical AGM adopts the following rationality criteria
[Gärdenfors and Rott, 1995]:
(non-contradictoriness) Where possible, epistemic states
should remain non-contradictory;
(Cclosure) Any sentence logically entailed by beliefs in an
epistemic state should be included in the epistemic state;
(minimality) When changing epistemic states, loss of
information should be kept to a minimum;



Revisions

Definition (Internal Revision)
K ∗ α = (K − ¬α) + α

Definition (External Revision (Hansson 1993))
K ∗ α = (K + α)− ¬α



A new system from the sketch?

AGM compliance
An AGM-compliant logic is simply one in which is possible to
completely characterize the contraction operation via the
classical postulates. Formally we have the following:

Definition (AGM-compliance (Flouris 2006))
A logic L is AGM-compliant if it admits at least one operation
− : Th(L)× L −→ Th(L) on L which satisfies the postulates for
contraction.
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LFIs are AGM-compliant

Compact and supra-classical logics such as the LFIs
considered here are AGM-compliant.
Furthermore, in this kind of logic recovery (K ⊆ (K − α) + α)
and relevance (if β ∈ K \ K − α then there exists K ′ such that
K − α ⊆ K ′ ⊆ K , α /∈ K ′ and α ∈ K ′ + β) are equivalent.
Hence, altough this is not valid in general, relevance and
recovery can be used indistinguishably for the logics
considered here [Ribeiro, Wassermann and Flouris 2013].



AGMp system

Definition (AGMp external revision)
An AGMp external revision over L is an operation
∗ : Th(L)× L −→ Th(L) satisfying the following postulates:
(closure) K ∗ α = Cn(K ∗ α)

(success) α ∈ K ∗ α
(inclusion) K ∗ α ⊆ K + α

(vacuity) if ¬α 6∈ K then K + α ⊆ K ∗ α
(non-contradiction) if ¬α ∈ K ∗ α then ` ¬α
(relevance) if β ∈ K \ (K ∗ α) then there exists X such that

K ∗ α ⊆ X ⊆ K + α, ¬α 6∈ Cn(X ) and ¬α ∈ Cn(X ) + β

(pre-expansion) (K + α) ∗ α = K ∗ α



Representation Theorem

Given the definition of partial meet contraction, as expected
external partial meet revision is fully characterized by the
postulates of Definition 5.

Theorem
An operation ∗ : Th(L)× L→ Th(L) is an AGMp external
revision over L iff it is an external partial meet revision operator
over L, that is: there is a selection function γ for AGMp in L
such that K ∗ α =

⋂
γ(K + α,¬α), for every K and α.



AGM◦ system

Definition (Postulates for AGM◦ contraction)
A contraction over L is a function − : Th(L)× L −→ Th(L)
satisfying the following postulates:
(closure) K − α = Cn(K − α).
(success) If α /∈ Cn(∅) and ◦α /∈ K then α /∈ K − α.
(inclusion) K − α ⊆ K .
(failure) If ◦α ∈ K then K − α = K .
(relevance) If β ∈ K \ K − α then there exists K ′ such that

K − α ⊆ K ′ ⊆ K , α /∈ K ′ and α ∈ K ′ + β.



Definition (selection function for AGM◦ contraction)
A selection function in L is a function
γ : Th(L)× L −→ ℘(Th(L)) \ {∅} such that, for every K and α:

1. γ(K , α) ⊆ K⊥α if α /∈ Cn(∅) and ◦α /∈ K .
2. γ(K , α) = {K} otherwise.



The partial meet contraction is the intersection of the sets
selected by the choice function:

K −γ α =
⋂
γ(K , α).

Theorem (Representation for AGM◦ contraction)
An operation − : Th(L)× L −→ Th(L) satisfies the postulates
of Definition 7 iff there exists a selection function γ in L such
that K − α =

⋂
γ(K , α), for every K and α.



Definition (Postulates for internal AGM◦ revision)
An internal AGM◦ revision over L is an operation
∗ : Th(L)× L −→ Th(L) satisfying the following:
(closure) K ∗ α = Cn(K ∗ α).
(success) α ∈ K ∗ α.
(inclusion) K ∗ α ⊆ K + α.
(non-contradiction) If ¬α /∈ Cn(∅) and ◦¬α /∈ K then
¬α /∈ K ∗ α.

(failure) If ◦¬α ∈ K then K ∗ α = K + α

(relevance) If β ∈ K \ K ∗ α then there exists K ′ such that
K ∩ K ∗ α ⊆ K ′ ⊆ K and ¬α /∈ K ′, but ¬α ∈ K ′ + β.



Theorem (Representation for internal AGM◦ partial
meet revision)
An operation ∗ : Th(L)× L −→ Th(L) over L satisfies the
postulates of Definition 10 if and only if there exists a selection
function γ in L such that K ∗ α =

(⋂
γ(K ,¬α)

)
+ α, for every K

and α.



Definition (Postulates for external AGM◦ revision)
An external revision over L is a function
∗ : Th(L)× L −→ Th(L) satisfying the following postulates:
(closure) K ∗ α = Cn(K ∗ α).
(success) α ∈ K ∗ α.
(inclusion) K ∗ α ⊆ K + α.
(non-contradiction) if ¬α /∈ Cn(∅) and ∼α /∈ K then
¬α /∈ K ∗ α.

(failure) If ∼α ∈ K then K ∗ α = L
(relevance) If β ∈ K \ K ∗ α then there exists K ′ such that

K ∗ α ⊆ K ′ ⊆ K + α and ¬α /∈ K ′, but ¬α ∈ K ′ + β.
(pre-expansion) (K + α) ∗ α = K ∗ α.



Theorem (Representation for external AGM◦ partial
meet revision)
An operation ∗ : Th(L)× L −→ Th(L) over L satisfies the
postulates for external partial meet AGM◦ revision (see
Definition 12) iff there is a selection function γ in L such that
K ∗ α =

⋂
γ(K + α,¬α), for every K and α.



The logical possibility of defining an external revision operator
over L challenges the need of a prior contraction, as in the
internal revision. Thus, it is possible to interpret the contraction
underlying an internal revision as an unnecessary retraction
and therefore as a violation of the principle of minimality. On
the other hand, if we consider the non-contradiction principle as
a priority, then the internal revision remains to be the only
rational option. This illustrates the clear opposition between the
principle of non-contradiction and that of minimality. Such
opposition deserves further attention in future works.
By capturing two different principles of rationality, both revisions
differ both intuitively and logically.



Consolidation and semi-revision

Definition (Remainder for sets)
Let K be a belief set in L and A ⊂ L. The set K⊥PA ⊆ ℘(L) is
such that for all X ⊆ L, X ∈ K⊥PA iff the following is the case:
1. X ⊆ K
2. A ∩ Cn(X ) = ∅
3. If X ⊂ X ′ ⊆ K then A ∩ Cn(X ′) 6= ∅.



Consolidation considers a specific subset A, that is, the one
that represents the totality of contradictory sentences in K ,
defined as follows:

Definition (Contradictory set)
Let K be a belief set in L. The set ΩK of contradictory
sentences of K . is defined as follows:

ΩK = {α ∈ K : exists β ∈ L such that α = β ∧ ¬β}.



Definition (Consolidation function)
A consolidation function in L is a function
γ : Th(L) −→ ℘(Th(L)) \ {∅} such that, for every belief set K in
L:
1. If K 6= L then γ(K ) ⊆ K⊥PΩK
2. If K = L then γ(K ) = {K}

The consolidation operator defined by a consolidation function
γ is then defined as follows: for every belief set K in L,

K !γ =
⋂
γ(K )



As stated previously, both revisions require effective integration
of the new belief. On the other hand, from the definition of
external revision, it is possible to define a revision in which the
principle of primacy of new information, tacitly accepted in
internal and external revisions, is challenged. In the context of
belief bases it is called semi-revision by Hansson, which is
characterized by the expansion-consolidation scheme.
The semi-revision for belief sets can be defined as a
generalization of external-revision, in which the choice for the
removal is left to the selection function.

K ?γα = (K + α)!γ



Final remarks...


